Deploying Digital Substations

Harsh Vardhan – GE Grid Solutions
Wojciech Szela - PECO

September, 2017
IEC 61850 Digital Substation

The digital substation architecture can be divided into three levels:

The station control area
Communication within substation and control system, coordination with the substation operational function and the station-level support function.

The protection and control level
Protection and control of substation equipment: includes IEDs traditionally called “secondary equipment” (protections, measurement devices, bay controllers, recorders...)

The primary equipment process level
Capture of voltage and current signals, consolidation, processing, and transmission of data via optical fibres: intelligent primary devices (electronic power and instrument transformers, circuit-breakers, disconnectors) and optical fibre have replaced traditional CT/VT systems and conventional cable wiring.
The standard: IEC 61850-9-2 (Ed.1)
• Standard for communication networks and systems in substations – Part 9-2: Specific communication service mapping (SCSM) – Sampled values over ISO/IEC 8802-3
• The standard was very broad, leaving wide room for interpretation which complicates interoperability

Implementation Guideline for digital interface to Instrument transformers using IEC 61850-9-2
• To facilitate implementation and enable interoperability, the UCA International Users Group created a guideline that defines an application profile of IEC 61850-9-2
• Commonly referred to as IEC 61850-9-2 LE (Light Edition)

The standard: IEC 61869-9 DIGITAL INTERFACE FOR INSTRUMENT TRANSFORMERS
• Replaces IEC 60044-8 digital solution
• Provides a product standard for instrument transformers with a digital interface according to 61850 Includes backward compatibility for IEC 61850-9-2
• Uses IEC 61588 for time synchronization
Digital Substation Drivers

1. Footprint Reduction/ Copper Reduction
 - Primary equipment, AIS: Sharing of steelwork and foundations
 - Primary equipment, GIS: CT chamber size reduction with DIT, VT integration in bus-duct
 - Secondary equipment: Panel size reduction: compact IEDs
 - Copper hardwiring replaced by fibre

2. Safety
 - Primary equipment: Oil-free instrument transformers
 - Secondary equipment: Removal of CT secondary circuit, removal of need to change ratio taps

3. Situational Awareness Applications
 - Integrated condition monitoring, asset management and wide area control

Care for employees and the public: No fatality risk

Clear alerts and dashboards
PECO Digital Substation Pilot
POST Substation
PECO POST Substation Pilot

Purpose - To implement the digital substation technology in the substation as a “proof of concept”, learn and understand different components of a digital substation and compare it with the existing conventional technology.

Scope - The scope of the project involves supplying a complete digital solution for the protection & control of a 230kV Line consisting two Circuit Breakers.

Name of the substation: POST Substation
Location: Philadelphia, PA
Total Number of Bays: 12
Digital Substation Pilot Bays: 2
Commissioning Date: May, 2017
Selection of Equipment
Primary Equipment – Optical CT
POST Substation – Optical CT Installation
Primary Interface Devices - Merging Units, Switchgear Control Unit

Merging Units
• Merging Units are used to merge the output signal from COSI-F3 Optical current transformers and conventional VTs to produce the 9-2LE Sampled value streams
• 80 Samples/ Cycle

Switchgear Control Units
• SCU is used to interface with the Circuit Breakers, Isolators, earth switches etc.. The Circuit breaker status inputs (52a and 52b contacts) are hard wired to the SCU. SCU then communicates these signals to the protection and control devices on the station bus.
• Protection Trips, CB control commands are sent via SCU
A Line distance protection relay supporting IEC 61850 9-2LE is selected. The relay can subscribe to multiple streams of 9-2LE sampled values.

Each primary and backup system has one such relay.

The primary protection relay subscribes to the sampled values coming from the primary Merging units, MU-CB895 and MU-CB695.

Backup protection relay subscribes to the sampled values coming from the backup Merging units, MU-CB895 and MU-CB695.

Relays have self monitoring & Diagnostic features.
Ethernet Switch, Substation Server

Ethernet switches are required to make the necessary Ethernet network for process bus and station bus. Ethernet switches selected in the project also supports the functionality of PTP Transparent clocks for the time distribution using PTP.

A substation server (with HMI) supporting IEC61850 Client functionality is also provided for local monitoring & engineering of the system. All the Equipment (Protection relays, Merging units, GPS clock etc.) could be accessed via the HMI PC.
GPS Clock – Time Synchronization

Redundant GPS Clocks

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Time synchronization Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Relay</td>
<td>PTP (Precision Time Protocol)</td>
</tr>
<tr>
<td>SCU</td>
<td>PTP (Precision Time Protocol)</td>
</tr>
<tr>
<td>Merging Units</td>
<td>PPS (Pulse Per Second) over Fiber</td>
</tr>
<tr>
<td>Substation Server</td>
<td>SNTP (Simple Network Time Protocol)</td>
</tr>
<tr>
<td>HMI PC</td>
<td>SNTP (Simple Network Time Protocol)</td>
</tr>
</tbody>
</table>
POST Substation Architecture

- Two independent Systems – Primary System and Backup
- 100% Equipment Redundancy (except for substation server and HMI)
POST Substation – Communication Optimization
(Segregating Process bus and Station Bus)

Optimization of the Ethernet Traffic:
• V-LAN Filtering
OR
• MAC address Filtering

LEGEND:
- Fiber Optic IRIG-B
- Ethernet RJ-45 (MMS/SNTP etc.)
- Fiber Optic connection GOOSE / MMS/SNTP/ PTP
- Fiber Optic connection IEC 61850 9-2LE Sampled Values
- Coaxial cable for GPS Antenna
Installation, Testing & Commissioning
Optical CTs – Installation, Testing & Commissioning

- Each Circuit Breaker has two sets of COSI-F3 CTs on each phase (A, B & C)
- CTs are pre-calibrated at the factory for a stated accuracy for a given range of primary current
- No need to worry about the CT ratios and CT polarities.
Secondary Equipment – Installation, Testing & Commissioning

- All the secondary equipment is mounted in the panels
- All equipment are pre-tested during FAT

- Configuration tool for Process Bus Relays is same as for conventional Relays
- Settings for Process Bus Relays is same as for conventional Relays with some additional settings such as SvId, time sync etc.
- Secondary Injection kit supporting 9-2LE is used to test the relays
Self-Diagnostic & Monitoring System

• All the devices in the system have self-diagnostic capabilities so the end user does not have to spend much time troubleshooting the system.

• If there is any failure in receiving the digital signal from the optical CTs mounted in the field, the merging unit will generate an alarm for this. Moreover, the merging unit will also raise the corresponding quality flag for this in the sampled value frames so that the subscribing protection relay would know about this failure and would act accordingly.

• If the protection relay fail to subscribe to any of the two merging units or if the samples coming from any of the merging units are not time synchronized, the relay will generate an alarm for this. Another example, If the SCU fails to subscribe the GOOSE signals from the protection relay, the SCU will generate an alarm for this and send it to the SCADA.
POST Substation – Panels at Site

- GPS Clock – RT430
- DAP Server – DAP AT
- Ethernet Switch – T1000
- Touchscreen HMI PC
- Protection Relay MiCOM P546
- Keyboard for HMI PC
- COSI NXMU – CB 895
- COSI NXMU – CB 695
- Digital I/O Merging Unit – MU320
- Auxiliary Relays - LJ
- Test Blocks
Conclusion

This project is a first step beyond studies to understanding and realizing the practical benefits from the design process to implementation and maintenance.

Implementing a digital system in parallel with a conventional protection and control system was necessary to evaluate and compare the performance between the systems.

This project will be an invaluable vehicle and model to proving that digital substations can be a practical reality.